How to add watermark to pdf document

Written by Apitron Documentation Team

What is a watermark

Watermark is usually a semitransparent drawing added on top of the page content which can
be created using various ways. This type of marking your documents becomes necessary when
you have to indicate a particular purpose the document is designed for or to give some

n VN,

handling instructions. Examples are: “For internal reading only”, “Do not copy”, “Top Secret”
etc. It's also useful for placing banners indicating the product name, the document was

created by, or its evaluation state.

We’'ll describe several watermarking approaches in this post and provide C# code samples
which generate watermarks programmatically.

Image watermark

This type of watermark is simple and convenient. You create an image containing your

message and draw it over the page content.

Pros:

Easy to create and use, single image XObject can be shared by all pages
Provides a simple way to use any picture as watermark

May affect resulting file by increasing its size significantly if image used is big enough

For the image to become transparent it has to include some kind of transparency mask
and this fact can be a problem for non-transparency aware readers

Raster images don’t scale well, so this watermark may become pixelated when zoomed
Becomes a part of page content

See the C# code snippet below that shows how to add image watermark:

/// <summary>
/// Adds image watermark to PDF document.
/// </summary>

public

{
//

void AddImageWatermark()

open existing document

using (Stream file = File.OpenRead("Apitron PDF Kit in Action.pdf"))

{

}

FixedDocument pdfDocument = new FixedDocument(file);
// register image XObject
pdfDocument.ResourceManager.RegisterResource(new Image("watermark”, "watermark.png", true));

// add image watermark for each page
foreach (Page page in pdfDocument.Pages)

{
page.Content.AppendImage("watermark", @, @, page.Boundary.MediaBox.Width,

page.Boundary.MediaBox.Height);
}

// save watermarked file
using (Stream stream = File.Create("image_watermark.pdf"))

{
}

pdfDocument.Save(stream);

The image below demonstrates the execution results:

=

File

image_watermark.pdf - Adobe Reader — =
Edit View Window Help S

1.2, Overview of Apitron PDF Kit API

The library can be divided into two large parts, demonstrating different approaches to PDF
creation and manipulation. Being independent from each other they share several common

objects and can be combined together to achieve a complex effect.

These parts are:

FixedLayout API, built around the FixedDocumsnt class and provides “classic”
approach for PDF manipulation. It has 100% mapping to spec-defined entities and
can be used for every task where you need the precise control over the things which
are to be put on PDF page and the way it should be done. You can get access to all
drawing commands and content of the page; everything in PDF document can be
manipulated using this API. See the section 3. Fixed layout AFPI for the details.

FlowLayout API, built around the FlowDocumsnt class and provides innovative and
flexible approach to generate PDF files using styles-based, html- and css- like
document model. You could use it when you need automatic layout rules applied to

fhe content blocks. You don't set the explicit position of content elements on page,

but rather control they layout behavior using built-in styling mechanism similar to
C55 used with HTML. Content for the document has to be built using predefined
content elements, eg. Textbhlock, Imags, Grid etc. while flow layout engine
performs automatic pagination or splitting if necessary. See the section 4. Flow
layout API for the details.

1.3 Supported platforms

Apitron PDF Kit is compatible with any .NET framework version starting from 2.0, Mono and
¥amarin. This component can be used to create applications for Windows (Windows Forms,
WPF, Web, Console, Services), Windows 8/Windows 8.1/Windows Store, Windows Phone
Store 8.0/8.1, Xamarin.i05, XamarinAndroid or any 05 for which a .NET/Mono
implementation exists.

595.4x 792.0 pt

Pic. 1 Image watermark sample

Form XObject watermark

This type of watermark assumes basic knowledge of PDF drawing system. Using this approach
it’s easy to create vector-based drawings suitable for watermarking.

Pros:

e Compactness, single watermark form XObject can be shared by all pages
e Scales well if it contains vector drawings only, requires no transparency mask

Cons:

e Requires some knowledge of PDF drawing system
e Becomes a part of page content

Let’s create a simple text-based watermark using the C# code below:

public void AddFormXObjectWatermark()
{

// open existing document

using (Stream file = File.OpenRead("Apitron PDF Kit in Action.pdf"))

{
FixedDocument pdfDocument = new FixedDocument(file);
// define watermark transparency using graphics state
GraphicsState watermarkGS = new GraphicsState("gs@"){CurrentNonStrokingAlpha = 0.2};
// register graphics state object
pdfDocument.ResourceManager.RegisterResource(watermarkGS);
// create watermark form XObject
FixedContent watermark = new FixedContent("watermark",pdfDocument.Pages[0].Boundary.MediaBox);
// register form XObject
pdfDocument.ResourceManager.RegisterResource(watermark);
// define text and transformation for it
TextObject watermarkText = new TextObject(StandardFonts.Helvetica,48);
watermarkText.AppendText("Apitron PDF Kit for .NET");
watermark.Content.ModifyCurrentTransformationMatrix(1,1.25,-1.25,1,50,50);
// define current color and transparency
watermark.Content.SetGraphicsState("gs0");
watermark.Content.SetDeviceNonStrokingColor(RgbColors.Red.Components);
// draw watermark text
watermark.Content.AppendText(watermarkText);
// add watermark to each page
foreach (Page page in pdfDocument.Pages)

{
}

// save watermarked file
using (Stream stream = File.Create("formXObject_watermark.pdf"))

{
}

page.Content.AppendXObject("watermark™);

pdfDocument.Save(stream);

The result is shown below. You may notice that it looks sharper because of its vector nature:

™ formXObject_watermark.pdf - Adobe Reader = =
File Edit View Window Help

L]

3.2.1 Font types in PDF

Several font types are defined in PDF spec and described in terms of font file format,
encadings, character maps and other usual font characteristics. But we will discuss fonts from
the other point of view, because in most cases you won't be thinking whether your font is
stored in TrueType, OpenType, CFF or other font file format. The most important things are
however, will it be accessible to the viewer of prepared document and how it'll affect the
resulting PDF file.

So far there are three font types you have to deal with:

Standard fonts - fonts defined by POF specification as to be supported by any conforming PDF
reader and therefore documents created using such fonts should be always viewable. These
fonts don't require any font data to be written into resulting PDF file and don't affect its size.

These fonts are: Times-Roman, Helvetica, Courier, Symbal, Times-Bold, Helvetica-Bold, Courier-
Bold ZopfDingbats, Times-italic, Helvetica-Obligue, Courier-Obligue, Times-Bolditalic,
Helvetica-BoldObligue, Courier-BoldOblique.

Apitron PDF Kit defines a StandardFonts enum that maps to this set.

See section 9.6.2.2 “Standard Type 1 Fonts (Standard 14 Fonts) * of the PDF specification for
the details.

Sample code below, shows how one could use a standard font for a text object:

/{ create text object based on standard Typel font
TextObject text = new TextObject(3tandardFonts. TimesBold, 12);

External fonts — fonts assumed to be installed to the default system fonts location, e.g. one of
the fonts from “C-\Windows|Fonts”. They could be used when document is being viewed on
M5 Windows. These fonts also don't affect document size because their data is not included in
the resulting file.

Embedded fonts — the name speaks for itself, so these fonts are being included into the POF
file making it platform-independent and viewable on all systems where a conforming reader
exists. They also affect resulting file size. It's possible to embed only the data needed to
display particular text contained in PDF file and it's what Apitron PDF Kit does when it has to
embed font data. This technique is called font-subsetting and only glyphs used along with their
data are being embedded into the resulting PDF file in a form of a reduced-size font file.

595.4 % 792.0 pt

Pic. 2 Watermark added using form XObject

Watermark annotation

A watermark annotation can be used to represent graphics that is to be printed at a fixed size
and position on a page, regardless of the dimensions of the printed page.

Pros:

e Compactness, designed specifically for watermarks
e (Can be easily managed using page annotations dictionary
e Requires no transparency mask

Cons:

e Requires some knowledge of PDF drawing system and annotations

// Adds watermark annotation to the document.
public static void AddWatermarkAnnotation()
{
// open existing document
using (Stream file = File.OpenRead("Apitron PDF Kit in Action.pdf"))
{
FixedDocument pdfDocument = new FixedDocument(file);
// define watermark transparency using graphics state and register graphics state object
GraphicsState watermarkGS = new GraphicsState("gs@") { CurrentNonStrokingAlpha = 0.2 };
pdfDocument.ResourceManager.RegisterResource(watermarkGs);
// create watermark content
FixedContent watermark = new FixedContent("watermark", pdfDocument.Pages[@].Boundary.MediaBox);
// define text and transformation for it
TextObject watermarkText = new TextObject(StandardFonts.Helvetica, 48);
watermarkText.AppendText("Apitron PDF Kit for .NET");
watermark.Content.ModifyCurrentTransformationMatrix(1, 1.25, -1.25, 1, 50, 50);
// define current color and transparency
watermark.Content.SetGraphicsState("gs0");
watermark.Content.SetDeviceNonStrokingColor(RgbColors.Red.Components);
// draw watermark text
watermark.Content.AppendText(watermarkText);
// create watermark annotation object for each pages
foreach (Page page in pdfDocument.Pages)
{
WatermarkAnnotation watermarkAnnotation = new WatermarkAnnotation(page.Boundary.MediaBox);
watermarkAnnotation.Appearance.Normal = watermark;
page.Annotations.Add(watermarkAnnotation);

}

using (Stream stream = File.Create("watermark_annotation.pdf"))

{
}

pdfDocument.Save(stream);

}

The code creating watermark annotation produces the same results as the code that adds
form XObject watermark.

Watermarks removal

It’s possible to remove watermarks from PDF file however we don’t recommend doing it
because it can cause legal problems. Techniques used involve content analysis as well as
annotations checks. There is no 100% reliable method, however, to remove all watermarking
information using single algorithm, because watermarks might be hidden in PDF metadata or
other less evident places.

For example, one may use fully transparent image which would appear only when the
document is being printed. Think of watermark as of piece of info hidden inside the PDF file, it
can be just anything.

Conclusion

Adding watermarks is not a tricky task and, as you can see, it can be completed quite easy
using Apitron PDF Kit for .NET component. This component is available for many platforms and
makes you able to create applications for Windows and Windows Store, Xamarin.iOS and
Xamarin.Android, OS X or any other system where a .NET/MONO can run. ASP.NET and Azure
environments are supported as well. You may visit its product page or browse documentation

here.

http://apitron.com/Product/pdf-kit
http://apitron.com/Documentation

	What is a watermark
	Image watermark
	Form XObject watermark
	Watermark annotation
	Watermarks removal
	Conclusion

