

How to apply clipping mask for drawings on PDF page

Written by Apitron Documentation Team

Introduction

When you work on PDF export feature for your custom CAD application or just want to take

advantage of the advanced PDF drawing capabilities you often need the clipping feature. The

PDF supports both clipping paths usage and text-based clipping and in this article we’ll show

you how to use them and apply the clipping while drawing on PDF page. (In addition, there are

soft mask and image mask features which are described in our book).

Apitron PDF Kit provides a fixed layout API that supports all possible drawing features defined

in PDF standard. When you need to add a drawing, you create a ClippedContent object that

acts as a canvas for your drawing. Its constructor accepts clipping path object that gets set as

the clipping mask for your drawing. If you need to combine the current clipping with another,

you create an additional clipping content object and add it inside the current one.

Text clipping works a bit different. You can set any text string as a clipping mask by creating a

regular TextObject, setting its rendering mode to the one that affects clipping, and adding it to

page’s content. This text then becomes a part of the clipping mask created by intersecting it

with the current clipping path.

http://apitron.com/docs/books/Apitron_Pdf_Kit_in_Action.pdf

The code

Code sample, provided below, demonstrates regular clipping as well as text-based clipping.

// demonstrates how to use text string as clipping path
public static ClippedContent DrawContentUsingTextClipping()
{
 ClippedContent clippedContent = new ClippedContent(0,0,200,200);
 // create text object
 TextObject clipText = new TextObject(StandardFonts.HelveticaBold, 30);
 // set text rendering mode that applies clipping
 clipText.SetTextRenderingMode(RenderingMode.SetAsClipping);
 clipText.AppendText("Text clipping!");

 // set current fill color
 clippedContent.SetDeviceNonStrokingColor(RgbColors.Red.Components);
 // position the text
 clippedContent.Translate(0, 20);
 clippedContent.AppendText(clipText);
 clippedContent.Translate(0, -30);
 // draw image through our clipping
 clippedContent.AppendImage("gradient",0,0,200,200);
 return clippedContent;
}

// demonstrates how to use regular path as clipping path
public static ClippedContent DrawContentUsingClippingPath()
{
 // create base clipping path comprising two circles drawn
 // in different directions one inside another
 Path clippingPath = new Path();
 clippingPath.AppendPath(Path.CreateCircle(150, 600, 100));
 clippingPath.AppendPath(Path.CreateCircle(150, 600, 50, false));
 // create clipped content object and set its clipping path,
 // we also set the clipping rule to even-odd to get the
 // donut-shaped clipping area
 ClippedContent clippedContent = new ClippedContent(clippingPath, FillRule.EvenOdd);
 // set current fill color
 clippedContent.SetDeviceNonStrokingColor(RgbColors.Red.Components);
 // draw rectanle through our clipping
 clippedContent.FillPath(Path.CreateRect(50, 500, 300, 200));
 return clippedContent;
}

static void Main(string[] args)
{
 // create document and register image resource
 FixedDocument doc = new FixedDocument();
 doc.ResourceManager.RegisterResource(new Image("gradient","../../data/gradient.jpg"));
 // create page and append our clipped contents to it
 Page page = new Page();
 page.Content.AppendContent(DrawContentUsingClippingPath());
 page.Content.Translate(250,700);
 page.Content.AppendContent(DrawContentUsingTextClipping());

 // append page to document and save it
 doc.Pages.Add(page);
 using (Stream stream = File.Create("clippedContent.pdf")){ doc.Save(stream); }

 Process.Start("clippedContent.pdf");
}

The result looks as follows (the complete code sample can be found in our github repo):

Pic. 1 Clipping based on graphics path and text string

Here, we created a donut-shaped clipping path using a path based on two circles drawn in

opposite directions and setting an even-odd rule for it. Text string becomes a clipping path

when we set its text rendering mode to SetAsClipping.

https://github.com/apitron/Apitron.PDF.Kit.Samples

Conclusion

With the Apitron PDF Kit for .NET library you can use advanced PDF graphic features such as

clippings, shadings and patterns to create complex drawings demonstrating rich visual effects.

Everything that can be drawn using PDF graphics system, can be drawn using fixed layout API

provided by our library.

http://apitron.com/Product/pdf-kit

	Introduction
	The code
	Conclusion

